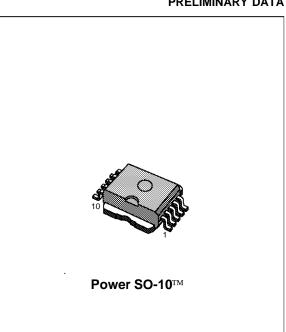
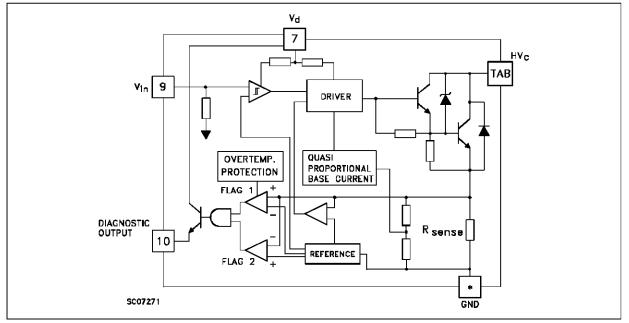


VB027SP

HIGH VOLTAGE IGNITION COIL DRIVER POWER IC


PRE	ELIMI	NARY	DATA

TYPE	V _{cl}	Ici	١ _d
VB027SP	360 V	8.5 A	80 m A

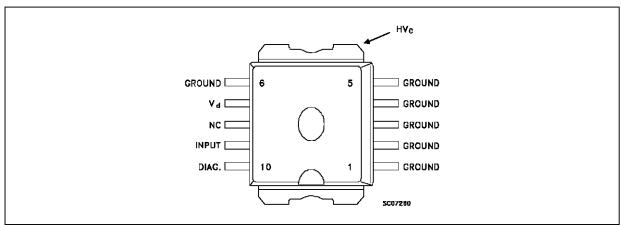

- PRIMARY COIL VOLTAGE INTERNALLY SET
- COIL CURRENT LIMIT INTERNALLY SET
- LOGIC LEVEL COMPATIBLE INPUT
- DRIVING CURRENT QUASI **PROPORTIONAL TO COLLECTOR** CURRENT
- DOUBLE FLAG-ON COIL CURRENT

DESCRIPTION

The VB027SP is a high voltage power integrated circuit made using SGS-THOMSON Microelectronics Vertical Intelligent Power Technology, with vertical current flow power darlington and logic level compatible driving circuit. Built-in protection circuits for coil current limiting and collector voltage clamping allows the VB027SP to be used as a smart, high voltage, high current interface in advanced electronic ignition systems.

BLOCK DIAGRAM

* PINS 1-5 = power GND, PIN 6 Signal GND, PIN 6 must be connected to PINS 1-5 externally.


ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
HV _C	Collector Voltage	Internally Limited	V
Ι _C	Collector Current	Internally Limited	A
Vd	Driving Stage Supply Voltage	7	V
l _d	Driving Circuitry Supply Current	200	mA
Vin	Maximum Input Voltage	10	V
Tj	Operating Junction Temperature	-40 to 150	°C
T _{stg}	Storage Temperature Range	-55 to 150	°C

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction Case	(MAX)	1.12	°C/W
$R_{thj-amb}$	Thermal Resistance Junction Ambient	(MAX)	62.5	°C/W

CONNECTION DIAGRAM

PIN FUNCTION

No	NAME	FUNCTION		
1 - 5	GND	Emitter Power Ground		
6 (*)	GND	Control Ground		
7	Vd	Supply Voltage For The Power Stage		
TAB	HVc	Output to The Primary Coil		
9	INPUT			
10	DIAGNOSTIC	Output of a Logic Signal When Ic Is Greater Than 3 A		

(*) PIN 6 must be connected to PINS 1 - 5 externally

$\textbf{ELECTRICAL CHARACTERISTICS} ~(V_b = 13.5~V;~V_d = 5~V;~T_j~= 25~^oC;~R_{coil} = 510~m\Omega;$

L_{coil} = 2.85 mH; unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vcl	High Voltage Clamp	$ \begin{array}{ll} V_{in} = 0.4 \ V & -40 \ ^oC \leq T_j \leq 125 \ ^oC \\ I_{coil} = 6 \ A \end{array} $	300	360	400	V
V _{ce(sat)}	Saturation Voltage of The Power Stage	$I_c = 6A; I_d = 80 \text{ mA}; V_{in} = 4V$		1.5		V
V _{ce(sat)dt}	Saturation Voltage of The Power Stage Derating in Temperature	$ I_c = 6A; I_d = 85 \text{ mA}; V_{in} = 4V \\ -40^{\circ}C \leq T_j \leq 125 \ ^{\circ}C $			2	V
I _{d(stdby)}	Stand-by Supply Current	V _{in} = 0.4 V			8	mA
$I_{d(on)}$	Power On Supply Current	$V_{in} = 4 V I_d = 6 A$ -40°C ≤ T _j ≤ 125 °C			130	mA
Vd	Driver Stage Supply Voltage		4.5		5.5	V
I _{cl}	Coil Current Limit	$V_{in} = 4 V$ (see note 1)	8	8.5	9	A
I _{cl(td)}	Coil Current Limit Drift With Temperature	See figure 3				
VinH	High Level Input Voltage	$HV_{c} < 2 V$	4		5.5	V
VinL	Low Level Input Voltage	$I_c < 2 \text{ mA} \text{ HV}_c = V_b$	0		0.8	V
linH	High Level Input Current	V _{in} = 4 V	40		200	μA
V_{diagH}	High Level Diagnostic Output Voltage	$R_{EXT} = 22 \text{ K}\Omega$ (see fig. 1)	3.5	*	V _d	V
V_{diagL}	Low Level Diagnostic Output Voltage	$R_{EXT} = 22 \text{ K}\Omega$ (see fig. 1)			0.5	V
I _{diagTH1}	Diagnostic Current First Threshold		4.25	4.5	4.75	A
I _{diagTD1}	Diagnostic Current First Threshold Drift With Temperature	See figure 4				
I _{diagTH2}	Diagnostic Current Second Threshold		5.45	5.8	6.15	A
I _{diagTD2}	Diagnostic Current Second Threshold Drift With Temperature	See figure 5				
t _{dlc}	Delay Time Coil Current	I _c = 5.5 A		25		μs
t _{flc}	Fall Time Coil Current	I _c = 5.5 A		8		μs
$t_{d(diag)}$	Delay Time Diagnostic Current	$R_{EXT} = 22 \text{ K}\Omega$ (see fig. 1)		1		μs
$t_{r(\text{diag})}$	Rise Time Diagnostic Current	$R_{EXT} = 22 \text{ K}\Omega$ (see fig. 1)		1		μs
$t_{f(diag)}$	Fall Time Diagnostic Current	$R_{EXT} = 22 \text{ K}\Omega$ (see fig. 1)		1		μs

Note 1: The primary coil current value Icl must be measured 1 ms afterdesaturation of the power stage.

* Vd - Vbe(on)

PRINCIPLE OF OPERATION

The VB027 is mainly intended as a high voltage power switch device driven by a logic level input and interfaces directly to a high energy electronic ignition coil.

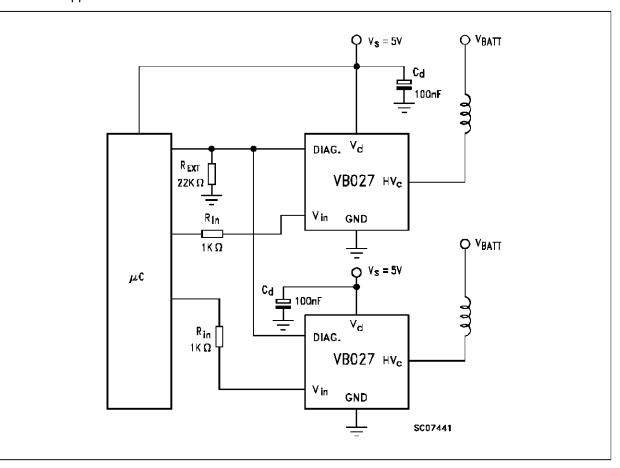
The input Vin of the VB027 is fed from a low power signal generated by an external controller that determines both dwell time and ignition point.

During Vin high $(\geq 4V)$ the VB027 increases current in the coil to the desired, internally set current level.

After reaching this level, the coil current remains constant until the ignition point, that corresponds to the transition of Vin from high to low (typ. 1.9V threshold).

During the coil current switch-off, the primary voltage HVc is clamped at an internally set value Vcl, typically 360V.

The transition from saturation to desaturation, coil current limiting phase, must have the ability to accomodate an overvoltage. A maximum overshoot of 20V is allowed.


FEEDBACK

When the collector current exceeds 4.5A, the feedback signal is turned high and it remains so, until the load current reaches 5.8A (second threshold), at that value, the feedback signal is turned low.

OVERVOLTAGE

The VB027 can withstand the following transients of the battery line:

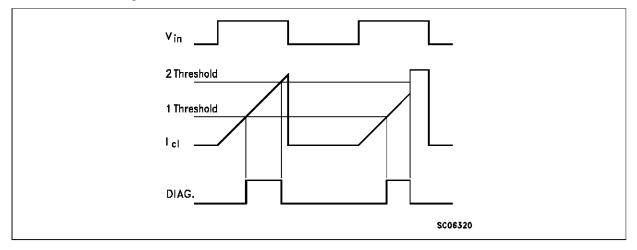

- $-100V/2msec (R_i = 10 \Omega)$
- +100V/0.2msec ($R_i = 10 \Omega$)
- +50V/400msec ($R_i = 4.2 \Omega$, with $V_{IN} = 3 V$)

FIGURE1: Application Circuit

FIGURE 2: Switching Waveform

FIGURE 3: Maximum Icl Versus Temperature

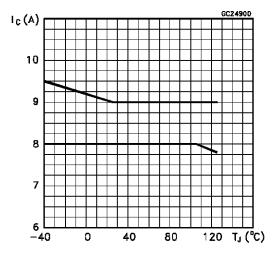


FIGURE 5: Iflag2 Versus Temperature

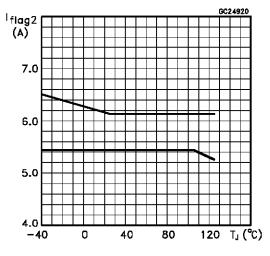
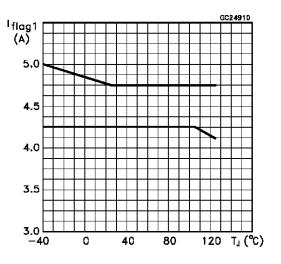
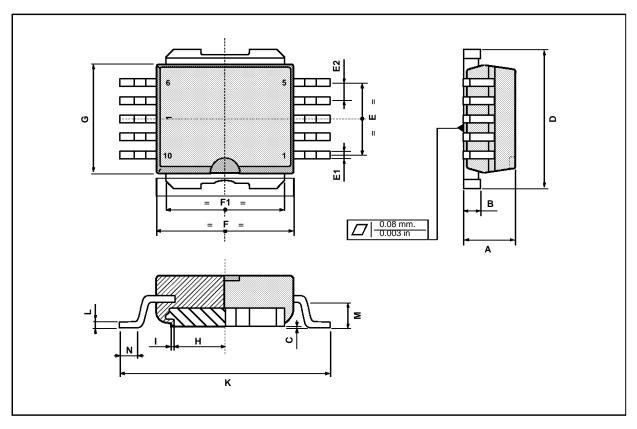




FIGURE 4: Iflag1 Versus Temperature

Power SO-10 MECHANICAL DATA

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	3.45	3.5	3.55	0.135	0.137	0.140
В		1.28	1.30		0.050	0.051
С			0.15			0.006
D	9.40	9.50	9.60	0.370	0.374	0.378
E	4.98	5.08	5.48	0.196	0.200	0.216
E1	0.40	0.45	0.60	0.016	0.018	0.024
E2	1.17	1.27	1.37	0.046	0.050	0.054
F	9.30	9.40	9.50	0.366	0.370	0.374
F1	7.95	8.00	8.15	0.313	0.315	0.321
G	7.40	7.50	7.60	0.291	0.295	0.299
Н	6.80	6.90	7.00	0.267	0.417	0.421
-		0.10			0.004	
к	13.80	14.10	14.40	0.543	0.555	0.567
L		0.40	0.50		0.016	0.020
М	1.60	1.67	1.80	0.063	0.066	0.071
Ν	0.60	0.08	1.00	0.024	0.031	0.039

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

